

Hall-Effekt Stromsensor CYHCS-LXA mit geschlossener Kreisstruktur

Dieser Hall-Effekt Stromsensor basiert auf der geschlossenen Kreisstruktur und dem Kompensationsprinzip, und kann für Messungen von DC und AC Strom sowie von Impulsstrom verwendet werden. Der Ausgang des Stromwandlers stellt die reale Welle des zumessenden Stroms im Primärleiter dar.

Produkteigenschaften	Anwendungen
 Geringe Größe, eingekapselt Exzellente Genauigkeit Sehr gute Linearität Geringer Stromverbrauch Stromüberlastbarkeit 	 Mehrzweck- Wechselrichter AC/DC Variable Geschwindigkeitstreiber Batteriebetriebene Anwendungen Nicht unterbrechbare Stromversorgung (UPS) Umschaltbare Stromversorgung

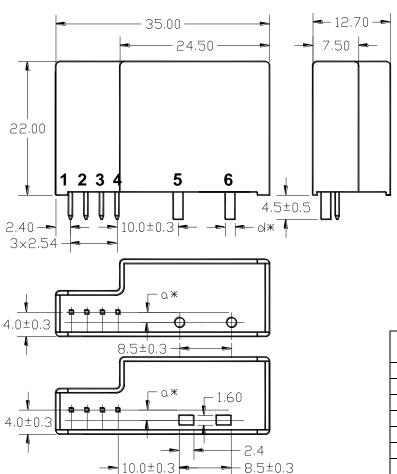
Elektrische Daten/Eingang

Teilenummer	Primärer	Messbereich	Primärer Leiter	Windungs-	Interner Mess-
	Nennstrom I_r (A)	$I_p(A)$	(mm)	verhältnis	widerstand (Ω)
CYHCS-LXA03A	3	± 9	Ø 0.6	7:1050	
CYHCS-LXA05A	5	± 15	Ø 0.8	4:1000	
CYHCS-LXA10A	10	± 30	Ø 0.8	3:1500	
CYHCS-LXA15A	15	± 45	Ø 1.0	2:1500	200-400
CYHCS-LXA20A	20	± 60	Ø 1.4	1:1000	200-400
CYHCS-LXA25A	25	± 75	Ø 1.4	1:1250	
CYHCS-LXA30A	30	± 90	Ø 1.6	1:1500	
CYHCS-LXA50A	50	± 150	□2.4x1.6	1:2500	

Nennstrom am Ausgang: ±20mA±0.5% Versorgungsspannung $\pm 15 \text{V} \pm 5\%$, Stromverbrauch 18mA ±20mA Isolationsspannung (50/60Hz, 1min) 5kV Genauigkeit: 0.5% Linearität: <0.1% FS Elektrische Offsetstrom ±0.2mA Thermaldrift des Offsetstromes ±0.005mA/°C Antwortzeit: < 1µs DC ~ 150kHz Frequenzbandbreite:

Allgemeine Daten

Betriebstemperatur, $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Lagerungstemperatur, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$


Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

PIN-Definition

1	+15V
2	-15V
3	Ausgang
4	GND
5	Eingang +
6	Eingang -

Teilenummer	а	d
	(mm)	(mm)
CYHCS-LXA03A	1.3	Ø 0.6
CYHCS-LXA05A	1.4	Ø 0.8
CYHCS-LXA10A	1.4	Ø 0.8
CYHCS-LXA15A	1.6	Ø 1.0
CYHCS-LXA20A	1.6	Ø 1.0
CYHCS-LXA25A	1.6	Ø 1.4
CYHCS-LXA30A	1.7	Ø 1.6
CYHCS-LXA50A	1.7	□ 2.4x1.6

Hinweis:

- 1. Verbinden Sie die Pins der Stromquelle und des Ausgangs richtig. Stellen Sie keine falschen Verbindung für den DC Strom her.
- 2. Die Temperatur des Primärleiters sollte100°C nicht überschreiten.

Kundenspezifische Sensoren mit anderem Eingangsstrom und anderer Ausgangsspannung sind verfügbar.

Email: info@cy-sensors.com http://www.cy-sensors.com