Hall Effect AC/DC Current Sensor CYHCS-GB This Hall Effect current sensor is based on closed loop principle and designed with core structure and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor. | Product Characteristics | Applications | | | |--|--|--|--| | Excellent accuracy Very good linearity Light in weight Less power consumption Window structure, easily mounting Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability | Photovoltaic equipment Frequency conversion timing equipments Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipments Electric powered locomotive Microcomputer monitoring Electric power network monitoring | | | #### **Electrical Data** | Part number | CYHCS-GB-10A | CYHCS-GB20A | CYHCS-GB-25A | CYHCS-GB40A | Unit | |---------------------------------|---------------------|-------------|--------------|-------------|------| | Nominal current | 10 | 20 | 25 | 40 | Α | | Measuring range | 0∼±20 | 0∼±40 | 0~±50 | 0∼±80 | Α | | Turns ratio | 1:1000 | 1:1000 | 1:1000 | 1:1600 | | | Nominal analogue output current | 10 | 20 | 25 | 25 | mA | | Measuring resistance | 1230 (max) | 594 (max) | 467 (max) | 420 (max) | Ω | | Secondary coil resistance | 43 | 43 | 43 | 90 | Ω | | Supply voltage | ±12 ~ ±15 | | | | V | | Current consumption | 20 + output current | | | | mA | | Galvanic isolation | 50HZ, 1min, 3kV | | | | kV | **Accuracy and Dynamic Performance** | Linearity | ≤±0.1 | %FS | |---------------------------------|---------------------|------| | Accuracy | ≤±0.7 | %FS | | Zero offset current | ±0.15 | mA | | Thermal drift of offset current | -25°C ~ +85°C, ±0.5 | mA | | Response time | <1 | μs | | Bandwidth(-3dB) | DC200 | kHz | | di/dt following accuracy | >50 | A/µs | ## **General Data** Ambient Operating Temperature, Ambient Storage Temperature, Unit weight: Standard: T_A =-25°C ~ +85°C T_S =-40°C ~ +100°C 12g / unit Q/320115QHKJ01-2016 Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121– 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com ## **PIN Definition and Dimensions** #### Notes: 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection. Rm ls **GND** - 2. Two potentiometers can be adjusted, only, if necessary, by turning slowly to the required accuracy with a small screwdriver. - 3. The best accuracy can be achieved when the window is fully filled with busbar (current carrying conductor). - 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer Email: info@cy-sensors.com http://www.cy-sensors.com