

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKFSC

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Split core window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Electrolyzing and electroplating equipment Electric powered locomotive
Current overload capability	 Electric power network monitoring

Electrical Data

Primary Nominal Current I_r (A)	Measuring Range $I_{\rho}(A)$	Output Current Io(mA)	Window Size (mm)	Part number
	1	10(1117)	(111111)	
300A	0 ~ ± 600A			CYHCS-EKFSC-300A-X
400A	0 ~ ± 800A			CYHCS-EKFSC-400A-X
500A	0 ~ ± 1000A			CYHCS-EKFSC-500A-X
600A	0 ~ ± 1200A	X=2: 0±20mA		CYHCS-EKFSC-600A-X
800A	0 ~ ± 1600A	X=5: 4-20mA	Ø62	CYHCS-EKFSC-800A-X
1000A	0 ~ ± 2000A	A-3. 4-2011A		CYHCS-EKFSC-1000A-X
2000A	0 ~ ± 3000A			CYHCS-EKFSC-2000A-X
4000A	0 ~ ± 5000A			CYHCS-EKFSC-4000A-X
6000A	0 ~ ± 6500A			CYHCS-EKFSC-6000A-X

Supply Voltage: V_{cc} =24VDC \pm 5% **Current Consumption:** I_c < 25mA + Io 5kV, 50/60Hz, 1min Isolation Voltage: Measuring resistance: $R_{\rm m} \le 600\Omega$

Accuracy at I_r , T_A =25°C (without offset): E <±1.0% FS Linearity from 0 to I_r , T_A =25°C: E_L <±1.0% FS

Overload capability: 3 times of primary nominal current

Electric Offset Current, T_A =25°C: I_{oe} =4mA or 12mA for Io=4-20mA, $I_{oe} \le \pm 0.1$ mA for Io=0 ± 20 mA

Magnetic Offset Current $(I_r \rightarrow 0)$: $I_{om} \leq \pm 0.1 \text{mA}$ Thermal Drift of Offset Current (I_p =0, T_A =-25°C~85°C): $I_{ot} \leq \pm 200 \text{ppm/}^{\circ}\text{C}$

Response Time at 90% of I_P (f=1k Hz): $t_r \leq 7 \mu s$

Frequency Bandwidth (-3dB): $f_b = DC - 20kHz$

General Data

Ambient Operating Temperature: $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature: $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Unit Weight: 500g/pc

Standard: Q/320115QHKJ01-2016

> Tel.: +49 (0)8121 - 2574100 Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com

OFS: Offset Adjustment GIN: Gain Adjustment

Pin arrangement of connector:

1: Vcc 2: GND 3: OUTPUT 4: GND

> CYHCS-EKFSC GND OUTPUT IO Rm Vo V

Cable connection:

Red: Vcc

Blue: GND

Yellow: OUTPUT

Black: GND

 $R_m \le 600\Omega$

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only, if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with current carrying conductor.
- 4. The in-phase output can be obtained when the current direction of current carrying conductor is the same as the direction of arrow marked on the transducer

Email: info@cy-sensors.com http://www.cy-sensors.com