

Open Loop AC/DC Hall Effect Current Sensor CYHCS-ST

This Hall Effect current sensor is based on open loop principle and designed with a solid core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulsed currents etc. The output of the transducer reflects the true RMS value of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Light in weight Less power consumption Measurement of the true effective value (RMS) Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring Electric power network monitoring

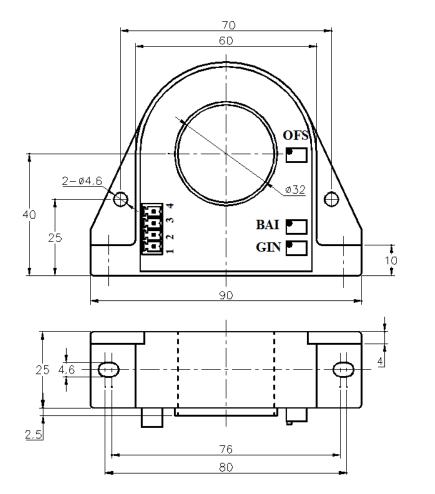
Electrical Data

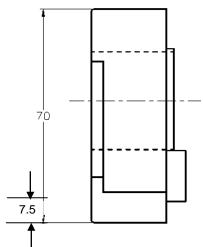
Primary Nominal Current <i>I_r</i> (A)	Primary Current Measuring Range I _p (A) at Vcc=24V	Output Voltage (analog) (V)	Part number
100	± 150	x=3: 0-5VDC for	CYHCS-ST100A-xnC
200	± 300	power supply of	CYHCS-ST200A-xnC
300	± 450	+12V and +15VDC	CYHCS-ST300A-xnC
400	± 600	x=8: 0-10VDC for	CYHCS-ST-400A-xnC
500	± 750	power supply of	CYHCS-ST-500A-xnC
600	± 900	+20V ~+32VDC CYHCS-ST-600A-xnC	CYHCS-ST-600A-xnC
1000	± 1200		CYHCS-ST-1000A-xnC

(n=2, Vcc= +12VDC; n=3, Vcc =+15VDC; n=4, Vcc =+20V ~+32VDC, Connector: Phoenix Connector 3.81: C=P3, Phoenix Connector 5.08: C=P5)

Current Consumption Galvanic isolation, 50/60Hz, 1min: Output Impedance: Load Resistor: Accuracy at I_r , T_A =25°C (without offset), Linearity from 0 to I_r , T_A =25°C, Electric Offset Voltage, T_A =25°C, Magnetic Offset Voltage, $I_r \rightarrow 0$) Thermal Drift of Offset Voltage, Thermal Drift (-10°C to 50°C), Response Time at 90% of I_P (f=1k Hz) Frequency Bandwidth (-3dB), Used Standard

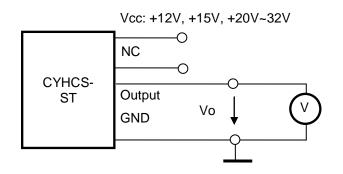
General Data

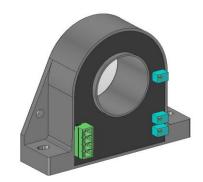

Ambient Operating Temperature, Ambient Storage Temperature, Unit weight, $I_c < 30$ mA ≥ 3.0 kV $R_{out} < 150\Omega$ $R_L > 10$ k Ω $X < \pm 1.0\%$ FS $E_L < 1.0\%$ FS $V_{oe} = \pm 35$ mV $V_{ot} < \pm 25$ mV $V_{ot} < \pm 2.0$ mV/°C T.C. $< \pm 0.1\%$ /°C $t_r < 150$ ms $f_b = 20$ Hz ~ 6kHz Q/320115QHKJ01-2016


 $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ 250g

Markt Schwabener Str. 8 D-85464 Finsing Germany Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

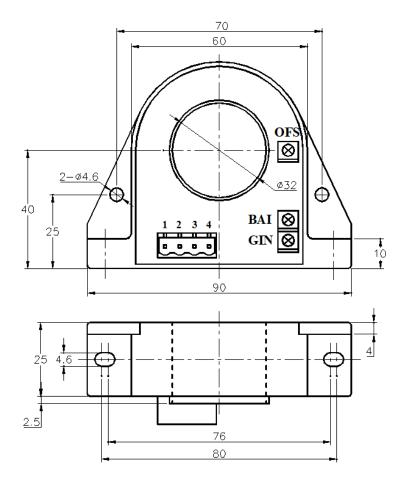
PIN Definition and Dimensions

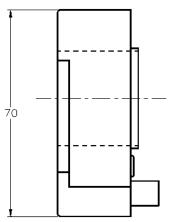




1(+):	Vcc
2(N):	NC
3(O):	Output
4(G):	GND

OFS: Offset Adjustment BAI: Accuracy adjustment GIN: Gain Adjustment


Connection



Phoenix Connector 3.81

1(+):	Vcc
2(N):	NC
3(O):	Output
4(G):	GND

Phoenix Connector 5.08

Notes:

OFS: Offset Adjustment

BAI: Accuracy adjustment

1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.

GIN: Gain Adjustment

- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer