

Split Core Open Loop Hall AC/DC Current Sensor CYHCS-KF-X

This Hall Effect current sensor is based on open loop principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

 Excellent accuracy Very good linearity Small size Photovoltaic equipment Frequency conversion timing equipment Various power supply 	Product Characteristics	Applications
 Less power consumption Split core window structure Electric welding machines Transformer substation Numerical controlled machine tools 	 Very good linearity Small size Light in weight Less power consumption Split core window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss 	 Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Transformer substation Numerical controlled machine tools Electrolyzing and electroplating equipment Electric powered locomotive Microcomputer monitoring

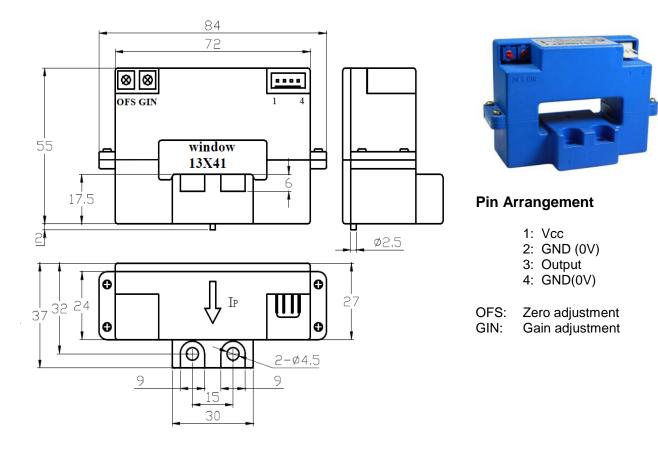
Electrical Data

Primary Nominal Current I_r (A)	Measuring Range (A)	Output Signal (Analog)	Window size (mm)	Part number
200	0~220			CYHCS-KF200A-X
400	0~440	X=4V: 0 - 4V X=5V: 0 - 5V X=20mA: 0 - 20mA X=40mA: 0 - 40mA	41x13	CYHCS-KF400A-X
500	0~550			CYHCS-KF500A-X
600	0~660			CYHCS-KF600A-X
800	0~880			CYHCS-KF800A-X
1000	0~1100			CYHCS-KF1000A-X

Supply Voltage V_{cc} = +12~+15V \pm 5% Current Consumption Vcc=+15V I_c < 25mA + lout Galvanic isolation, 50/60Hz, 1min: 3kV rms Load resistance for voltage output: $10k\Omega$ Measuring resistance for current output $40 - 200 \Omega$

Accuracy and Dynamic performance data

Accuracy at I_r , $T_A=25$ °C (without offset), *E*<±0.5% FS $E_L < \pm 0.5\% FS$ Linearity from 0 to I_r , T_A =25°C, Electric Offset Voltage/Current, T_A =25°C, V_{oe} <±25mV / I_{oe} ≤0.2mA Magnetic Offset Voltage $(I_r \rightarrow 0)$ $V_{om} < \pm 25 \text{mV}$ Thermal Drift of Offset Voltage/Current, V_{ot} <±1.0mV/°C/ I_{ot} <±0.005mA/°C Thermal Drift (-10°C to 50°C), T.C. < ±0.1% /°C Frequency bandwidth (- 3 dB): DC-20kHz Response Time at 90% of I_P (f=1k Hz) $t_r < 7 \mu s$ $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Operating Temperature, $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$ Ambient Storage Temperature, Unit weight: 237a/unit Used Standard: Q/320115QHKJ01-2016


Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121-2574101

Email: info@cy-sensors.com http://www.cy-sensors.com


Dimensions

Sensor Connection

Sensor with voltage output

Sensor with current output

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with bus-bar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of primary current is the same as the direction of arrow marked on the transducer

http://www.cy-sensors.com