

Split Core Hall Effect AC/DC Current Sensor CYHCS-EKF

This Hall Effect current sensor is based on open loop principle and designed with a split core and a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of AC/DC current etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications	
 Excellent accuracy Very good linearity Less power consumption Split core window structure Electrically isolating the output of the transducer from the current carrying conductor No insertion loss Current overload capability 	 Photovoltaic equipment Frequency conversion timing equipment Various power supply Uninterruptible power supplies (UPS) Electric welding machines Electrolyzing and electroplating equipment Electric powered locomotive Electric power network monitoring 	

Electrical Data

Drimary Naminal	Magazina Banga	Output Valtage	Window Size	Dort number
Primary Nominal	Measuring Range	Output Voltage		Part number
Current I_r (A)	$I_{\rho}(A)$	(Analog)(V)	(mm)	
300A	0 ~ ± 600A			CYHCS-EKF-300A-X
400A	0 ~ ± 800A			CYHCS-EKF-400A-X
500A	0 ~ ± 1000A			CYHCS-EKF-500A-X
600A	0 ~ ± 1200A	V 04V .4 00/		CYHCS-EKF-600A-X
800A	0 ~ ± 1600A	X=0: ±4V ±1.0% X=1: ±5V ±1.0%	Ø62	CYHCS-EKF-800A-X
1000A	0 ~ ± 2000A	Λ=1. ±3V ±1.0%		CYHCS-EKF-1000A-X
2000A	0 ~ ± 3000A			CYHCS-EKF-2000A-X
4000A	0 ~ ± 5000A			CYHCS-EKF-4000A-X
6000A	0 ~ ± 6500A			CYHCS-EKF-6000A-X

Supply Voltage: V_{cc} =±12V ~ ±15VDC ± 5%

Current Consumption ($Vc=\pm15VDC$): $I_c < 25mA$

Load Resistor: $R_L > 10k\Omega$

Accuracy at I_r , T_A =25°C (without offset): E < 1.0% FS Linearity from 0 to I_r , T_A =25°C: $E_I < 1.0\%$ FS

Overload capability: 3 times of measuring range

Electric Offset Voltage, T_A =25°C: V_{oe} <±25mV Magnetic Offset Voltage ($I_r \rightarrow 0$): V_{om} <±25mV

Thermal Drift of Offset Voltage (I_p =0, T_A =-25°C~85°C): V_{ot} <±1.0mV/°C

Response Time at 90% of I_P (f=1k Hz): t_r < 7μ s Frequency Bandwidth (-3dB): f_b = DC - 20kHz

General Data

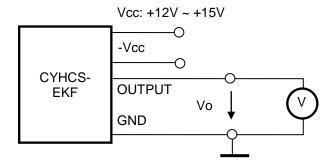
Ambient Operating Temperature: $T_A = -25^{\circ}\text{C} \sim +85^{\circ}\text{C}$ Ambient Storage Temperature: $T_S = -40^{\circ}\text{C} \sim +100^{\circ}\text{C}$

Unit Weight: 500g/pc

Standard: Q/320115QHKJ01-2016

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101


Email: info@cy-sensors.com http://www.cy-sensors.com

PIN Definition and Dimensions 4- Ø5.2 Ø107 Ø98 80F8 Rain 124 112

OFS: Offset Adjustment GIN: Gain Adjustment

Pin arrangement of connector:

1: Vcc 2: -Vcc 3: OUTPUT 4: 0V (GND)

Cable connection:

Red: Vcc Blue: -Vcc

Yellow: OUTPUT

Black: 0V (GND)

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with current carrying conductor.
- 4. The in-phase output can be obtained when the current direction of current carrying conductor is the same as the direction of arrow marked on the transducer

Email: info@cy-sensors.com http://www.cy-sensors.com