

AC/DC Closed Loop Hall Current Sensor CYHCS-B5V

This Hall Effect current sensor is based on closed loop compensating principle and designed with a high galvanic isolation between primary conductor and secondary circuit. It can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

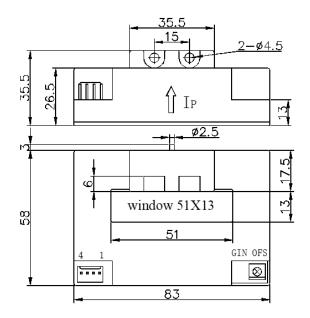
Product Characteristics	Applications
 Excellent accuracy Very good linearity Less power consumption Current overload capability Goods temperature properties 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies (UPS) Switched Mode Power Supplies

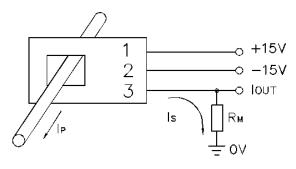
ELECTRICAL CHARACTERISTICS

Part number	CYHCS-B5V-	CYHCS-B5V-	CYHCS-B5V-	CYHCS-B5V-	CYHCS-B5V-
	200A	300A	400A	500A	600A
Rated current (RMS)	200A	300A	400A	500A	600A
Measuring range I _P	0~±300A	0~±450A	0~±600A	0~±750A	0~±900A
Turns ratio 1:N	1:2000	1:3000	1:4000	1:5000	1:6000
Secondary Internal	13Ω	22Ω	39Ω	53Ω	75Ω
Resistance	1022	2232	0012	0012	7 022
Rated output voltage	4V±0.5%				
Supply voltage	±15VDC ±5%				
Galvanic isolation	5kV RMS/50Hz/1min,				
Current consumption	20mA + I _P /N				


ACCURACY & DYNAMIC PERFORMANCE

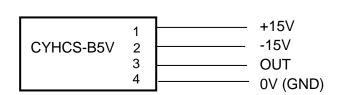
Zero offset voltage T _A =25°C	±20mV
Magnetic zero offset voltage I _P =0	±10mV
Thermal drift of offset voltage	±0.5mV/°C (-25°C ~ +85°C)
Response time	<1.0µs
Accuracy T _A =25°C, V _C =±15V	±0.7%
Linearity T _A =25°C, V _C =±15V	≤0.1% FS
di/dt following accuracy	150A/μs
Bandwidth(-3dB)	DC ~ 100kHz


GENERAL CHARACTERISTIC


Operating temperature	-25°C~+85°C
Storage temperature	-40°C~+100°C
Unit weight	160g
Standard used	Q/320115QHKJ01-2013

http://www.cy-sensors.com

Dimensions (mm)



1: +15V 2: -15V

3: Output voltage

4: GND

OFS: offset adjustment GIN: gain adjustment

Notes:

- 1. Connect the terminals of power source, output respectively and correctly, never make wrong connection.
- 2. Two potentiometers can be adjusted, only, if necessary, by turning slowly to the required accuracy with a small screwdriver.
- 3. The best accuracy can be achieved when the window is fully filled with busbar (current carrying conductor).
- 4. The in-phase output can be obtained when the direction of current of current carrying conductor is the same as the direction of arrow marked on the transducer

Email: info@cy-sensors.com http://www.cy-sensors.com