

Three-phase AC/DC Hall Current Sensor CYHCS-B31S

The CYHCS-B31S three-phase Hall current sensor uses the Hall effect principle to measure threephase AC, DC, or pulsating DC current signals in automotive low-voltage high power supply circuits in real time. It has the advantages of high accuracy, wide bandwidth, low offset drift, no insertion loss, and fast response, and can be used in automotive starter generators, inverters, HEV/EV, DC/DC converters, and other applications.

Product Features	Applications
 High Accuracy High Linearity Low power consumption Window structure Sensor output electrically isolated from measured current leads No insertion loss Current overload capability 	 Automotive Starter Generators Uninterruptible Power Supply (UPS) DC/DC converters Frequency Conversion Devices Electric Locomotives Inverters Power Network Monitoring

Table 1 Absolute maximum ratings

noromotor	Symbol	Symbol Unit	Value			Dressutioners Note
parameter	Symbol Un		Min	Тур.	Max	Precautionary Note
Supply voltage	Vdd	V	-0.3		+10	Exceeding the absolute maximum rating
Output voltage	Vout	V	-0.3		+10	may cause permanent damage to the
Output current	Іоит	mA	-50		±70	product, and exposure of the sensor to
Operating Temperature Range	TA	°C	-40		+150	the absolute maximum rating for more than a certain period will affect the
Storage temperature range	Ts	°C	-55		+165	reliability of the sensor.

Table 2 Normal operating parameters

Devementer	Cumb al	11	Value			Testeseditions
Parameter	Symbol U	Unit	Min	Тур.	Max	Test conditions
Measuring range of primary current	IPN	А	-900		+900	
Sensitivity	S	mV/A		2.222		
Supply voltage	V _{DD}	V	4.75	5.0	5.25	
Supply current	I _{DD}	mA		45	50	V _{DD} =5V, no output load
Output voltage (analog)	Vout	V	$(V_{DD} / 5) \times (U_{O} + S \times I_{P})$		S x I _P)	
Output Offset Voltage	Uo	V		2.5		V _{DD} =5V
Output Load Resistance	R∟	kΩ	4.7	10	220	
Output Load Capacitance	CL	nF	1	10	47	
Output Resistance	Rout	Ω		1	5	$V_{OUT} = V_{DD}/2, R_L = 6k\Omega$
Accuracy	E _R	%	-1		1	$T_A = 25^{\circ}C, V_{DD} = 5V, I_{PN}$
Linearity	Eι	%	-1		1	$T_A = 25^{\circ}C, V_{DD} = 5V, I_{PN}$
Response Time	T _R	μs			6	V _{DD} =5V,I _{PN} =20Arms
Frequency Bandwidth	BW	kHz	40			-3dB
Phase Change	$\Delta \Phi$	0		-4		DC~1kHz
Out-of-phase output voltage error	TCu₀	mV			±10	-40°C~+125°C
Sensitivity Output Drift	TCs	%		±2		-40°C~+125°C
Sensor Output Drift	TC _{Vout}	%		±2.5		-40°C~+125°C

Technologies GmbH & Co KG

Table 2 Normal operating parameters (continue)

Parameter	Symbol	Unit	Value			Test condition
Falailletei	Symbol		Min	Тур.	Max	rest condition
Working Temperature	TA	°C	-40		+125	
Storage Temperature	Ts	°C	-40		+125	
DC Output Voltage Ripple	V _{no}	mV		10		DC
Insulation Resistance	Rins	MΩ	500			1000VDC,500V/s, ISO 16750-2
Isolation Withstanding Voltage	Vd	kV			3	ISO 16750-2
Sensor Weight	М	g	95	105	115	

Table 3 Environmental adaptation parameters

Test Items	Test standard	Test condition
High temperature and high humidity	JESD 22-A101	$T_A=85^\circ\text{C},\ 85\%\text{RH},\ 1000\text{h},\ V_{\text{DD}}=5.25\text{V},\ I_{\text{P}}=0\text{A}$, Monitor Sensor Output
High and low temperature storage	ISO 16750-4	$T_{A}\text{=}-40^{\circ}\text{C}/\text{+}125^{\circ}\text{C},\ 1000\text{h},\ V_{\text{DD}}\text{=}5.25\text{V},\ I_{\text{P}}\text{=}0\text{A},\ Monitor}$ Sensor Output
Temperature cycling	IEC 60068-2-14	T _A =-40°C~+125°C, 500 cycles; V _{DD} =5.25V, I _P =0A , Monitor Sensor Output
Temperature Shock	IEC 60068-2-14	T _A =-40°C/+125°C, 1000 cycles
Alternating humidity and heat	IEC 60068-2-38	T _A =65°C/25°C,80%~96%RH,10 days
Sine wave vibration	ISO 16750-3	$T_A=-40^{\circ}C/95^{\circ}C$, 22h/axis, 100Hz~440Hz, sweep rate ≤0.5oct/min; $V_{DD}=5.25V$, $I_P=0A$, monitor sensor output
Random vibration	ISO 16750-3	T _A =-40°C/95°C, 22h/axis, 100Hz~440Hz, sweep rate \leq 0.5oct/min; V _{DD} =5.25V, I _P =0A, monitor sensor output
Mechanical Vibration	ISO 16750-3	T _A =-40°C/95°C, 22h/axis, 96.6m/S ² rms/axis, V _{DD} =5.25V, I _P =0A, monitor sensor output
Static Immunity ESD	ISO 10605	Terminal contact discharge \pm 4kV and \pm 6kV, air discharge \pm 15kV, 150pF/330 Ω , Requirements: Sensor function or performance is temporarily degraded or lost under conditions V _{DD} = 5V, I _P = 0, but self-recovery.
Radiated Immunity RI	ISO 11452-2	400MHz~1GHz, 100V/m, Requirements: Sensor function or performance is temporarily degraded or lost under conditions $V_{DD} = 5V$, $I_P = 0$, but self-recovery.
High current injection immunity BCI	ISO 11452-2	1MHz~400MHz, amplitude adjustment 100mA, Requirements: Sensor function or performance is temporarily degraded or lost under conditions $V_{DD} = 5V$, $I_P = 0$, but self-recovery.
Radiated Emission RE	CISPR 25 Section 6.5 Table 7	Type 5 test method, frequency set to 150kHz~2.5GHz, R $\& \text{D}$
Magnetic Field Immunity MFI	ISO 11452-8	16.67Hz/50 μ T, 50Hz/50 μ T, 60Hz/50 μ T, 150Hz/25 μ T, 180Hz/25 μ T, Requirements: Sensor function or performance is temporarily degraded or lost under conditions V _{DD} = 5V, I _P = 0, but self-recovery.

Versio1 Released in June 2024 Dr.-Ing. habil. Jigou Liu

Chen Y ang Technologies GmbH & Co KG

Input Current and Output Voltage Relationship

Figure 1 $@V_{DD} = 5V$, $I_{PN} = \pm 900A$,

```
Vout=(VDD / 5) x (Uo + S x IP), 在 IP=450A 时, Vout=5/5 x (2.5V +2.222 x450/1000)=3.5V
```

Operating Method

Connect the test circuit as shown in Fig. 2 according to the definition of the sensor terminal to test the output performance of the sensor.

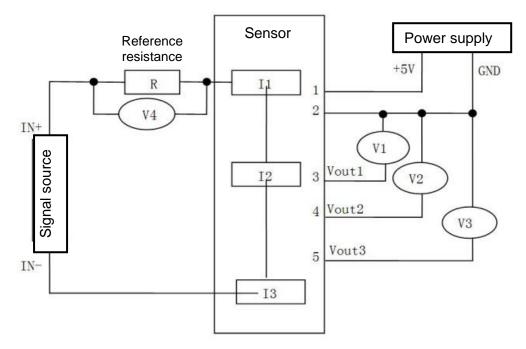


Figure 2 Sensor peripheral wiring diagram

Note:

- The measured input current is converted to voltage by a standard resistor R and monitored with a multimeter V4. The three-phase output voltage signal is monitored with a multimeter V1/V2/V3 voltage step.
- 2. The sensor uses a special customized automobile eyelet terminal output.

Markt Schwabener Str. 8 D-85464 Finsing Germany Tel.: +49 (0)8121 – 2574100 Fax: +49 (0)8121 – 2574101 Email: info@cy-sensors.com http://www.cy-sensors.com

Dimensions

Product dimensions are as shown in Figure 3, with a tolerance of ± 0.3 for external dimensions and ± 0.2 for positioning holes, in mm.

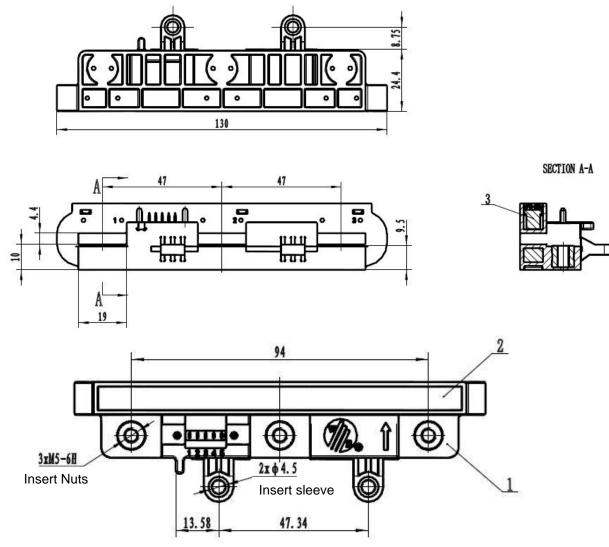
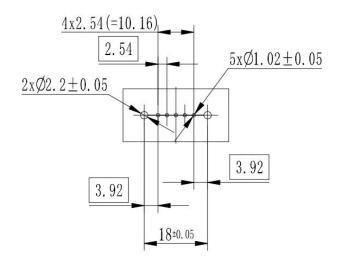


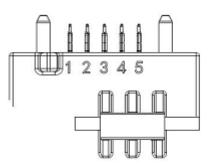
Figure 3 External Dimensions of the sensor

Note:


- 1. Primary Current: The primary current is installed on the driver board by inserting it through holes 1, 2, and 3 in the direction of the arrows marked on the case. Refer to Fig. 6 for installation details.
- 2. Terminals: A 5-position pin with a pitch of 2.54 mm is used to input the power supply and output the measured current.
- 3. Material: PBT-GF30 (black) for the plastic part; CuSn6/Sn (eyelet pins) for the output terminal.
- 4. PCBA: Maximum Insertion Force 500N, Minimum Holding Force 125N after installation.
- 5. Recommended aperture size for PCB connection in mm.


Versio1 Released in June 2024 Dr.-Ing. habil. Jigou Liu

Chen Y ang Technologies GmbH & Co KG


PCB Mounting Dimensions

Hole size is after plating Cu thickness 25~50µm Sn thickness 1~2µm Pad dimensions refer to standard IEC60352-5.

Figure 4 PCB Mounting Hole Dimensions Reference Diagram

terminal number	terminal definition	Remarks		
1	V _{DD} (+5V)	Power supply		
2	GND	Ground		
3	Output 1	Voltage output of phase 1		
4	Output 2	Voltage output of phase 2		
5	Output 3	Voltage output of phase 13		

Figure 5 Terminal Definition Diagram

Versio1 Released in June 2024 Dr.-Ing. habil. Jigou Liu

Installation

The terminal of the sensor of this model is connected to the driver circuit board of the device using the pin terminal of the automobile eyelet with a pitch of 2.54mm and Φ 0.64mm. The current to be measured is routed through the holes of the sensor and fixed to the user device through the screw holes at the top of the sensor housing, as shown in Fig. 6 in green. The green part is the CYHCS-B31S three-phase Hall current sensor.

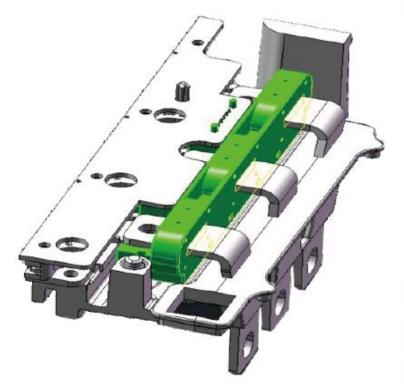


Figure 6 Schematic diagram of sensor mounting structure

Notes:

- 1. Be sure to connect the power supply terminals and output terminals correctly, and do not misconnect them.
- 2. Measuring accuracy is best when the busbar (current lead to be measured) completely fills the aperture.
- 3. The output is in phase when the direction of the current in the primary lead is in the same direction as the arrow marked on the sensor housing.